On a class of fractional \(p(x,y)-\)Kirchhoff type problems with indefinite weight
-
Seyed Mostafa Sajjadi
sjadysydmstfy@gmail.com
-
Ghasem Alizadeh Afrouzi
afrouzi@umz.ac.ir
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2601.107Abstract
This paper is concerned with a class of fractional \(p(x,y)-\)Kirchhoff type problems with Dirichlet boundary data along with indefinite weight of the following form
\begin{equation*}
\left\lbrace\begin{array}{ll}
M\left(\int_{Q}\frac{1}{p(x,y)}\frac{|u(x)-u(y)|^{p(x,y)}}{|x-y|^{N+sp(x,y)}}\,dx\,dy\right)\\
(-\triangle_{p(x)})^s+|u(x)|^{q(x)-2}u(x) & \\
=\lambda V(x)|u(x)|^{r(x)-2}u(x)& \text{in }\Omega,\\
u=0, & \text{in }\mathbb{R}^N\Omega.
\end{array}\right.
\end{equation*}
By means of direct variational approach and Ekeland’s variational principle, we investigate the existence of nontrivial weak solutions for the above problem in case of the competition between the growth rates of functions \(p\) and \(r\) involved in above problem, this fact is essential in describing the set of eigenvalues of this problem.
Keywords
Mathematics Subject Classification:
S. Antontsev, F. Miranda, and L. Santos, “Blow-up and finite time extinction for p(x, t)-curl systems arising in electromagnetism,” J. Math. Anal. Appl., vol. 440, no. 1, pp. 300–322, 2016, doi: 10.1016/j.jmaa.2016.03.045.
E. Azroul, A. Benkirane, and M. Shimi, “Eigenvalue problems involving the fractional p(x)-Laplacian operator,” Adv. Oper. Theory, vol. 4, no. 2, pp. 539–555, 2019, doi: 10.15352/aot.1809-1420.
E. Azroul, A. Benkirane, M. Shimi, and M. Srati, “On a class of fractional p(x)-Kirchhoff type problems,” Appl. Anal., vol. 100, no. 2, pp. 383–402, 2021, doi: 10.1080/00036811.2019.1603372.
A. Bahrouni and V. D. Rădulescu, “On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent,” Discrete Contin. Dyn. Syst. Ser. S, vol. 11, no. 3, pp. 379–389, 2018, doi: 10.3934/dcdss.2018021.
N. T. Chung, “Eigenvalue problems for fractional p(x,y)-Laplacian equations with indefinite weight,” Taiwanese J. Math., vol. 23, no. 5, pp. 1153–1173, 2019, doi: 10.11650/tjm/190404.
F. J. S. A. Corrêa and G. M. Figueiredo, “On a p-Kirchhoff equation via Krasnoselskii’s genus,” Appl. Math. Lett., vol. 22, no. 6, pp. 819–822, 2009, doi: 10.1016/j.aml.2008.06.042.
I. Ekeland, “On the variational principle,” J. Math. Anal. Appl., vol. 47, pp. 324–353, 1974, doi: 10.1016/0022-247X(74)90025-0.
X. Fan and D. Zhao, “On the spaces Lp(x)(Ω) and Wm,p(x)(Ω),” J. Math. Anal. Appl., vol. 263, no. 2, pp. 424–446, 2001, doi: 10.1006/jmaa.2000.7617.
U. Kaufmann, J. D. Rossi, and R. Vidal, “Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians,” Electron. J. Qual. Theory Differ. Equ., 2017, Art. ID 76, doi: 10.14232/ejqtde.2017.1.76.
Most read articles by the same author(s)
- Abolfazl Sadeghi, Ghasem Alizadeh Afrouzi, Maryam Mirzapour, Investigating the existence and multiplicity of solutions to \(\varphi(x)\)-Kirchhoff problem , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
Similar Articles
- Abdelilah Azghay, Mohammed Massar, On a class of fractional \(p(\cdot,\cdot)-\)Laplacian problems with sub-supercritical nonlinearities , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Elhoussain Arhrrabi, Hamza El-Houari, Fractional Sobolev space: Study of Kirchhoff-Schrödinger systems with singular nonlinearity , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Hamza El-Houari, Lalla Saádia Chadli, Hicham Moussa, On a class of fractional Γ(.)-Kirchhoff-Schrödinger system type , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Paul W. Eloe, Jeffrey T. Neugebauer, Maximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvalues , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Hasnae El Hammar, Chakir Allalou, Adil Abbassi, Abderrazak Kassidi, The topological degree methods for the fractional \(p(\cdot)\)-Laplacian problems with discontinuous nonlinearities , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Wael Abdelhedi, Minkowski type inequalities for a generalized fractional integral , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Sapan Kumar Nayak, P. K. Parida, Global convergence analysis of Caputo fractional Whittaker method with real world applications , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- George A. Anastassiou, Right general fractional monotone approximation , CUBO, A Mathematical Journal: Vol. 17 No. 3 (2015): CUBO, A Mathematical Journal
- Aboudramane Guiro, Idrissa Ibrango, Stanislas Ouaro, Weak homoclinic solutions to discrete nonlinear problems of Kirchhoff type with variable exponents , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
- Saïd Abbas, Mouffak Benchohra, Jamal-Eddine Lazreg, Gaston M. N‘Guérékata, Hilfer and Hadamard functional random fractional differential inclusions , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 S. M. Sajjadi et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.